SEMICONDUCTORS

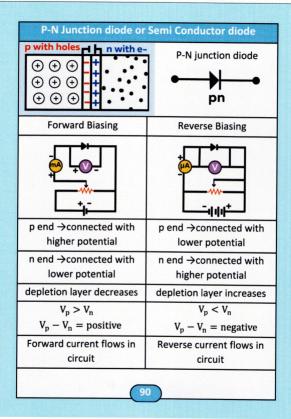
Classification of Semi-conductors

Extrinsic Semiconductors

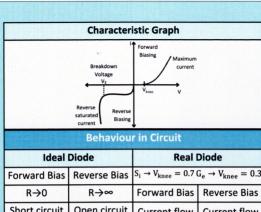
P-type	N-type
Trivalent impurity is added (B,In,AI) CB OOOOOOOOOO VB	Pentavalent impurity is added (P,As,Sb) CB e^e^e^e^e^e^e^e^e^e^e VB
$n_h >> n_e$	$n_h \ll n_e$
$J \cong en_h V_h$	J≅ en _e V _e

$$\sigma = \frac{1}{\rho} \cong en_h \mu_h \qquad \sigma = \frac{1}{\rho} \cong en_e \mu_e$$

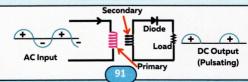
Intrinsic Semi-conductors

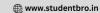

Semi-conductors					
$Si \rightarrow E_g = 1.1 \text{ eV}$ $Ge \rightarrow E_g = 0.68 \text{ eV}$	Conductivity of Semiconductors				
$n_e = n_h = n_i$	$\sigma = e(n_e \mu_e + n_h e \mu_h)$				
$J = ne[V_e + V_h]$	$\sigma = \frac{1}{\rho} = \text{en}[\mu_e + \mu_h]$				

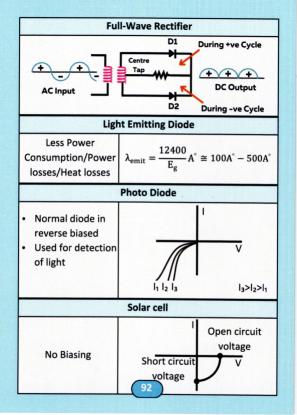
Mass Action Law


$$n_1^2 = n_h n_e$$
 $n_1^2 \rightarrow \text{intrinsic carrier density}$

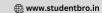
85

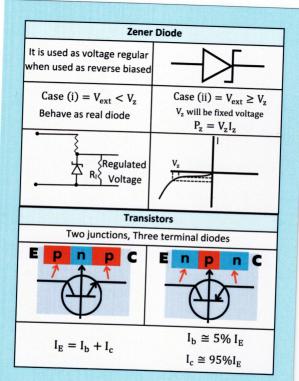


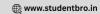

Ideal	Diode	Real Diode			
Forward Bias	Reverse Bias	$S_i \rightarrow V_{knee} = 0.70$	$G_e \rightarrow V_{knee} = 0.3$		
R→0	R→∞	Forward Bias	Reverse Bias		
Short circuit	Open circuit	Current flow	Current flow		
V _{knee} =0	V _{knee} =0	from p to n	from n to p		
$I = \frac{V_{\text{ext}}}{R_{\text{ext}}}$	No current will flow	$I = \frac{V_{\text{ext}} - V_{\text{knee}}}{R_{\text{ext}} - R_{\text{f}}}$	No current passed		
A Provide the state of the stat					

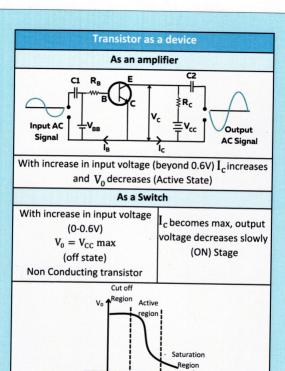

Application of p-n junction diode

Rectifier Converts AC input to DC output

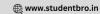

Half-Wave Rectifier



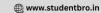


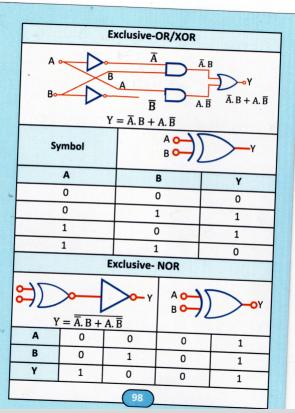


Γ	Com	mon Base	Common Emitter				
	Re VEE VCC Reverse biased		$\begin{array}{c c} R_{E} & I_{c} & I_{c} \\ \hline I_{b} & I_{c} & V_{cc} \\ \hline I_{loput} I_{b} & Output I_{c} \\ \hline Forward & Reverse \\ biased & biased \\ \end{array}$				
	Current Gain	$\alpha = \frac{I_C}{I_E}$	Current Gain	$\beta = \frac{I_C}{I_b}$			
	Voltage Gain	$\alpha \frac{R_C}{R_E}$	Voltage Gain	$\beta \frac{R_C}{R_b}$			
	Power Gain	$\alpha^2 \frac{R_C}{R_E}$	Power Gain	$\beta^2 \frac{R_C}{R_b}$			
	Phase	Same phase	Phase	Opp. phase			
	Relation b/w α & β						
	α	$=\frac{\beta}{\beta+1}$	$\beta = \frac{\alpha}{1 - \alpha}$				
	94						



	Logic Gates								
	De Morgan Law								
	A +	$\overline{B} =$	Ā. B			Ā+	$\overline{\overline{B}} = A$	В	
	AB	$= \overline{A}$	+ <u>B</u>				= A +		
			Different	Con	nbii	nations			
In	put	OR	NOR	AN	D	NAND	X-OR	X-NOR	
Α	В							11.01	
0	0	0	1	0	: 1	1	0	1	
0	1	1	0	0		1	1	0	
1	0	1	0	0		1	1	0	
1	1	1	0	1		0	0	1	
Gate	Boolean Gate Expressi on		Formed Using			Circuit Symbol		Electrical Circuit	
NOT	Y =	Ā	CE Transistor		A	→	Key parallel with bulb		
OR	Y = A	+ B	-		A B		paral in seri	keys in lel and es with ulb	





	Gate Expressi		Formad	Circuit Symbol	Electrical Circuit
	NOR	$Y = \overline{A + B}$	Diode + CE Transistor	A _B	Two keys in parallel and in parallel with bulb
	AND	Y = A. B		A B	Two keys in series and in series with bulb
	NAND	$Y = \overline{A.B}$	CE + two diode		two keys in series and in parallel with bulb
関係機 法計算			97		

